AI in Oncological Cancer Detection

Authors

  • zamin hamid Parul University image/svg+xml Author
  • Mohd Maaz Sheikh Author
  • Bhanu Prakash Jha Author

Keywords:

Oncological Cance, AI, Cancer Detection, Medical Imaging,, Histopathology, Liquid Biopsy

Abstract

Artificial Intelligence (AI) is revolutionizing the landscape of oncological cancer detection by improving diagnostic accuracy, reducing interpretation time, and aiding in early identification of malignancies. This paper provides a comprehensive review of AI techniques applied in cancer detection, including machine learning (ML), deep learning (DL), convolutional neural networks (CNNs), and other AI models. We delve into various medical modalities—imaging, histopathology, genomics, and liquid biopsy—highlighting how AI integrates with each. The paper also includes a thorough literature survey, outlines current challenges, discusses ethical and regulatory issues, and concludes with future prospects of AI-driven oncology.

Downloads

Download data is not yet available.

References

Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Carvalho, S., ... & Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5(1), 4006. https://doi.org/10.1038/ncomms5006

Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., ... & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954–961. https://doi.org/10.1038/s41591-019-0447-x

Bibault, J. E., Giraud, P., & Burgun, A. (2016). Big Data and machine learning in radiation oncology: State of the art and future prospects. Cancer Letters, 382(1), 110–117. https://doi.org/10.1016/j.canlet.2016.04.033

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056

Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510. https://doi.org/10.1038/s41568-018-0016-5

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & van der Laak, J. A. W. M. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Suleyman, M. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6

Nagpal, K., Foote, D., Liu, Y., Chen, P. H. C., Wulczyn, E., Tan, F., ... & Corrado, G. S. (2019). Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digital Medicine, 2(1), 48. https://doi.org/10.1038/s41746-019-0112-2

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7

Wang, P., Berzin, T. M., Brown, J. R. G., Bharadwaj, S., Becq, A., Xiao, X., ... & Liu, X. (2019). Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut, 68(10), 1813–1819. https://doi.org/10.1136/gutjnl-2018-317500

Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719–731. https://doi.org/10.1038/s41551-018-0305-z

Zhang, B., He, X., Ouyang, F., Gu, D., Dong, Y., Zhang, L., ... & Tian, J. (2017). Radiomic machine-learning classifiers for prognostic biomarkers of head and neck squamous cell carcinoma. Frontiers in Oncology, 7, 315. https://doi.org/10.3389/fonc.2017.00315

Published

2025-08-25

Data Availability Statement

This study is a literature review and does not involve the generation of new datasets. All data referenced in this paper are publicly available through the cited sources.

How to Cite

AI in Oncological Cancer Detection. (2025). PUXplore Multidisciplinary Journal of Engineering, 1(1). https://puxplore.paruluniversity.ac.in/index.php/PXMJE/article/view/8

Similar Articles

You may also start an advanced similarity search for this article.