AI in Oncological Cancer Detection
Keywords:
Oncological Cance, AI, Cancer Detection, Medical Imaging,, Histopathology, Liquid BiopsyAbstract
Artificial Intelligence (AI) is revolutionizing the landscape of oncological cancer detection by improving diagnostic accuracy, reducing interpretation time, and aiding in early identification of malignancies. This paper provides a comprehensive review of AI techniques applied in cancer detection, including machine learning (ML), deep learning (DL), convolutional neural networks (CNNs), and other AI models. We delve into various medical modalities—imaging, histopathology, genomics, and liquid biopsy—highlighting how AI integrates with each. The paper also includes a thorough literature survey, outlines current challenges, discusses ethical and regulatory issues, and concludes with future prospects of AI-driven oncology.
Downloads
References
Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Carvalho, S., ... & Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5(1), 4006. https://doi.org/10.1038/ncomms5006
Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., ... & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954–961. https://doi.org/10.1038/s41591-019-0447-x
Bibault, J. E., Giraud, P., & Burgun, A. (2016). Big Data and machine learning in radiation oncology: State of the art and future prospects. Cancer Letters, 382(1), 110–117. https://doi.org/10.1016/j.canlet.2016.04.033
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510. https://doi.org/10.1038/s41568-018-0016-5
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & van der Laak, J. A. W. M. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Suleyman, M. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6
Nagpal, K., Foote, D., Liu, Y., Chen, P. H. C., Wulczyn, E., Tan, F., ... & Corrado, G. S. (2019). Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digital Medicine, 2(1), 48. https://doi.org/10.1038/s41746-019-0112-2
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
Wang, P., Berzin, T. M., Brown, J. R. G., Bharadwaj, S., Becq, A., Xiao, X., ... & Liu, X. (2019). Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut, 68(10), 1813–1819. https://doi.org/10.1136/gutjnl-2018-317500
Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719–731. https://doi.org/10.1038/s41551-018-0305-z
Zhang, B., He, X., Ouyang, F., Gu, D., Dong, Y., Zhang, L., ... & Tian, J. (2017). Radiomic machine-learning classifiers for prognostic biomarkers of head and neck squamous cell carcinoma. Frontiers in Oncology, 7, 315. https://doi.org/10.3389/fonc.2017.00315
Published
Data Availability Statement
This study is a literature review and does not involve the generation of new datasets. All data referenced in this paper are publicly available through the cited sources.
Issue
Section
License
Copyright (c) 2025 zamin hamid, Mohd Maaz Sheikh, Bhanu Prakash Jha (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.