Participation of AI Technologies in Financial Services DEFENSE AGAINST CYBER-ATTACKS

Authors

  • Dr. Neelesh Kumar Jain Parul University, Vadodara Author
  • Dr. Bhavna Bajpai Author
  • Dr. ARUN KUMAR MARANDI Author

Keywords:

AI, Financial Services, Cyber Attacks

Abstract

This abstract highlights the role of AI technologies in bolstering the defense against cyber-attacks in financial services. AI empowers organizations to proactively detect and respond to threats by analyzing vast amounts of data. It enables real-time anomaly detection, incident response automation, and fraud prevention. The integration of AI technologies strengthens the security posture of financial institutions and helps mitigate the risks associated with cyber-attacks.

Downloads

Download data is not yet available.

References

1. Choo, K. K. R., & Liu, Q. (2019). Deep Learning-Based Financial Cybercrime Detection System. Journal of Financial Crime, 26(2), 452-468.

2. Rajeeve, S. J., &Hettiarachchi, E. K. (2019). Cyber Risk Detection Using Machine Learning in Financial Services. International Journal of Computer Science and Information Security, 17(11), 43-49.

3. Coussement, K., & De Bock, K. W. (2019). Credit Scoring Models Using Artificial Intelligence Techniques: A Survey. European Journal of Operational Research, 276(2), 653-669.

4. Kou, G., Lu, Y., Peng, Y., & Shi, Y. (2020). Understanding and Generating Review Texts with Deep Reinforcement Learning. European Journal of Operational Research, 287(3), 993-1006.

5. Roderick, T. J., &Vatrapu, R. K. (2018). The Impact of Artificial Intelligence on Cybersecurity: A System Dynamics Approach. In Proceedings of the 51st Hawaii International Conference on System Sciences.

6. Datta, A., & Garg, L. (2020). Artificial Intelligence in Banking: A Comprehensive Literature Review. Decision Support Systems, 130, 113249.

7. Yassin, I., Elhoseny, M., Hassanien, A. E., & Fouad, M. M. (2021). A Comprehensive Review of Deep Learning Applications in Smart Cities. IEEE Access, 9, 23307-23326.

8. Alaparthi, S., Sarrafzadeh, M., & Sarkar, N. I. (2021). Explainable Machine Learning Models for Cybersecurity in Financial Systems. ACM Computing Surveys, 54(5), 1-29.

9. Li, B., Duan, Y., Zhao, S., & Zheng, L. (2021). Exploring the Impact of Artificial Intelligence on Cybersecurity. International Journal of Distributed Sensor Networks, 17(1), 1550147721994841.

10. Vella, K. A., & Jain, N. K. (2021). Cyber Security Threats in the Financial Services Sector: A Systematic Literature Review. Journal of Cybersecurity, 7(1), tyab006.

11. Akinbowale, O. E., H. E. Klingelhöfer, and M. F. Zerihun. 2020. Analysis of cyber-crime effects on the banking sector using the balanced score card: A survey of literature. Journal of Financial Crime 27 (3):945–58. doi:10.1108/JFC-03-2020-0037.

12. Al-Hamar, Y., H. Kolivand, and A. Al-Hamar. 2019. Phishing attacks in Qatar: A literature review of the problems and solutions. In 2019 12th International Conference on Developments in eSystems Engineering (DeSE) (pp. 837–842). IEEE. doi:10.1109/DeSE.2019.00155.

13. Almutairi, M, and H. Nobanee. 2020. Artificial intelligence in financial industry. Available at SSRN 3578238

14. Caldwell, M., J. T. A. Andrews, T. Tanay, and L. D. Griffin. 2020. AI-enabled future crime. Crime Science 9 (1):1–13. doi:10.1186/s40163-020-00123-8.

15. Chowdhury, A., G. Karmakar, and J. Kamruzzaman. 2017. Survey of recent cyber security attacks on robotic systems and their mitigation approaches. In Detecting and Mitigating Robotic Cyber Security Risks, 284–99. IGI global.

16. Dash, P., M. Karimibiuki, and K. Pattabiraman. 2021. Stealthy attacks against robotic vehicles protected by control-based intrusion detection techniques. Digital Threats: Research and Practice 2 (1):1–25. doi:10.1145/3419474.

17. EBF. 2019. “AI in the banking industry.” European Banking Federation position paper, https://www.ebf.eu/cybersecurity-innovation/ai-in-the-banking-industry-ebf-position-paper/.

18. Geluvaraj, B., P. M. Satwik, and T. A. Ashok Kumar. 2019. The future of cybersecurity: Major role of artificial intelligence, machine learning, and deep learning in cyberspace. In International Conference on Computer Networks and Communication Technologies (739–47). Springer, Singapore.

19. Guerrero-Higueras, Á. M., N. DeCastro-García, and V. Matellán. 2018. Detection of cyber-attacks to indoor real time localization systems for autonomous robots. Robotics and Autonomous Systems 99:75–83. doi:10.1016/j.robot.2017.10.006.

20. Kaloudi, N, and J. Li. 2020. The AI-based cyber threat landscape: A survey. ACM Computing Surveys 53 (1):1–34. doi:10.1145/3372823.

21. Lacava, G., A. Marotta, F. Martinelli, A. Saracino, A. La Marra, E. Gil-Uriarte, and V. M. Vilches. 2021. Cybsersecurity issues in robotics. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 12 (3):1–28.

22. Mosteanu, N. R. 2020. Artificial intelligence and cyber security–face to face with cyber-attack–A maltese case of risk management approach. Ecoforum Journal 9 (2):12–25.

23. Ranjan, S., D. R. Gupta, and D. A. Gupta. 2020. Artificial intelligence in financial acumen: Challenges and opportunities. Cosmos Journal of Engineering & Technology 10 (1):1–5.

24. Thowfeek, M. H., S. N. Samsudeen, and M. B. F. Sanjeetha. 2020. Drivers of artificial intelligence in banking service sectors. Solid State Technology 63 (5):6400–11.

Published

2025-08-25

How to Cite

Participation of AI Technologies in Financial Services DEFENSE AGAINST CYBER-ATTACKS. (2025). PUXplore Multidisciplinary Journal of Engineering, 1(1). https://puxplore.paruluniversity.ac.in/index.php/PXMJE/article/view/6

Similar Articles

You may also start an advanced similarity search for this article.